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Abstract

Theidealstoragesystemis globally accessible,alwaysavailable,
providesunlimited performanceandcapacityfor a large number
of clients, and requiresno management.This paperdescribes
the design,implementation,andperformanceof Petal,a system
thatattemptsto approximatethis ideal in practicethroughanovel
combinationof features.Petalconsistsof acollectionof network-
connectedservers that cooperatively managea pool of physical
disks.ToaPetalclient,thiscollectionappearsasahighlyavailable
block-level storagesystemthatprovideslarge abstractcontainers
calledvirtual disks. A virtualdiskisgloballyaccessibleto all Petal
clientsonthenetwork.A clientcancreateavirtualdiskondemand
to taptheentirecapacityandperformanceof theunderlyingphys-
ical resources.Furthermore,additionalresources,suchasservers
anddisks,canbeautomaticallyincorporatedinto Petal.

We have an initial Petalprototypeconsistingof four 225MHz
DEC 3000/700workstationsrunningDigital Unix andconnected
by a 155Mbit/s ATM network. The prototypeprovides clients
with virtual disksthat tolerateandrecover from disk, server, and
networkfailures.Latency is comparableto a locally attacheddisk,
andthroughputscaleswith thenumberof servers. Theprototype
canachieveI/O ratesof up to 3150requests/secandbandwidthup
to 43.1Mbytes/sec.

1 Intr oduction

Currently, managinglarge storagesystemsis an expensive and
complicatedprocess.Oftenasinglecomponentfailurecanhaltthe
entiresystem,andrequiresconsiderabletimeandeffort to resume
operation. Moreover, thecapacityandperformanceof individual
componentsin the systemmust be periodically monitoredand
balancedto reducefragmentationand eliminatehot spots. This
usuallyrequiresmanuallymoving,partitioning,or replicatingfiles
anddirectories.

This paperdescribesthe design,implementation,and perfor-
manceof Petal, an easy-to-managedistributed storagesystem.
Clients,suchasfile systemsanddatabases,view Petalasacollec-
tion of virtual disksasshown in Figure1. A Petalvirtual disk is a
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containerthatprovidesasparse64-bitbytestoragespace.As with
ordinarymagneticdisks,dataarereadandwritten to Petalvirtual
disksin blocks.In addition,it hasthefollowing novelcombination
of characteristics,whichwebelievewill reducethecomplexity of
managinglargestoragesystems:

� It cantolerateandrecoverfromany singlecomponentfailure
suchasdisk,server, or network.

� It canbe geographicallydistributed to toleratesite failures
suchaspoweroutagesandnaturaldisasters.

� It transparentlyreconfiguresto expandin performanceand
capacityasnew serversanddisksareadded.

� It uniformly balancesload and capacity throughout the
serversin thesystem.

� It provides fast, efficient supportfor backupand recovery
in environmentswith multiple typesof clients,suchasfile
serversanddatabases.

Petal’s virtual disksallow usto cleanlyseparatea client’s view
of storagefromthephysicalresourcesthatareusedtoimplementit.
Thisallowsustosharethephysicalresourcesmoreflexibly among
many clients,andto offer importantservicessuchas“snapshots”
andincrementalexpandabilityin anefficientmanner.

Thedisk-like interfaceofferedby Petalprovidesa lower-level
servicethana distributedfile system;however, we believe that a
distributed file systemcan be efficiently implementedon top of
Petal, and that the resultingsystemas a whole will be as cost
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Figure2: PhysicalView

effective asa comparabledistributedfile systemimplementation
thataccesseslocaldisksdirectly. By separatingthesystemcleanly
intoablock-levelstoragesystemandafile system,andbyhandling
many of thedistributedsystemsproblemsin theblock-levelstorage
system,we haveanoverall systemthatis easierto model,design,
implement,and tune. This simplicity is particularly important
whenthe designis expectedto scaleto a large sizeandprovide
reliabledatastorageover a long period of time. An additional
benefit is that the block-level interfaceis useful for supporting
heterogeneousclientsandclientapplications;thatis,wecaneasily
supportmany differenttypesof file systemsanddatabases.

WehaveimplementedPetalserversonAlphaworkstationsrun-
ning Digital Unix connectedby theDigital ATM network[2]. A
Petalclient interfaceexists for Digital Unix and is implemented
asakerneldevice driver, allowing all standardUnix applications,
utilities, and file systemsto run unmodifiedwhen using Petal.
Our implementationexhibitsgracefulscalingandprovidesperfor-
mancethatis comparableto localdiskswhile providingsignificant
new functionality.

2 Designof Petal

As shownin Figure2,Petalconsistsof apoolof distributedstorage
serversthatcooperatively implementa single,block-level storage
system. Clients view the storagesystemas a collectionof vir-
tual disks andaccessPetalservicesvia a remoteprocedurecall
(RPC)[3] interface. A basicprinciple in the designof the Petal
RPCinterfacewasto maintainall stateneededfor ensuringthein-
tegrity of thestoragesystemin theservers,andmaintainonlyhints
in theclients. Clientsmaintainonly a smallamountof high-level
mappinginformationthat is usedto routereadandwrite requests
to the“most appropriate”server. If a requestis sentto aninappro-
priateserver, theserver returnsanerrorcode,causingtheclient to
updateits hintsandretry therequest.

Figure3 illustratesthesoftwarestructureof Petal.Eachof the
ovals representsa softwaremodule. Arrows indicatethe useof
onemoduleby another. Twomodules,thelivenessmoduleandthe
globalstatemodule,managemuchof thedistributedsystemaspect
of Petal.Thelivenessmoduleensuresthatall serversin thesystem
will agreeontheoperationalstatus,whetherrunningor crashed,of
eachother. This serviceis usedby theothermodules,notablythe
globalstatemanager, toguaranteecontinuous,consistentoperation
of thesystemasa wholein thefaceof server andcommunication
failures.Theoperationof thelivenessmoduleisbasedonmajority
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Figure3: PetalServerModules

consensusandthe periodicexchangeof “I’m alive” and“You’re
alive” messagesbetweenthe servers. Thesemessageexchanges
mustbe donein a timely mannerto ensureprogressbut can be
arbitrarilydelayedor reorderedwithoutaffectingcorrectness.

Petalmaintainsinformationthatdescribesthecurrentmembers
of the storagesystemand the currently supportedvirtual disks.
Thisinformationis replicatedacrossall Petalserversin thesystem.
Theglobalstatemanageris responsiblefor consistentlymaintain-
ing this information,which is lessthana megabytein our current
implementation. Our algorithmfor maintainingglobal stateis
basedon LeslieLamport’s Paxos,or “part-timeparliament”algo-
rithm [14] for implementingdistributed,replicatedstatemachines.
Thealgorithmassumesthatserversfail by ceasingto operateand
that networkscanreorderandlosemessages.The algorithmen-
surescorrectnessin thefaceof arbitrarycombinationsof serverand
communicationfailuresandrecoveries,andguaranteesprogressas
long as a majority of serverscancommunicatewith eachother.
This ensuresthat managementoperationsin Petal,suchascreat-
ing, deleting,or snapshottingvirtual disks,or addinganddeleting
servers,arefault tolerant.

Theotherthreemodulesdealwith servicingthereadandwrite
requestsissuedbyPetalclients.Thedataaccessandrecoverymod-
ulescontrol how client datais distributedandstoredin thePetal
storagesystem.A differentsetof dataaccessandrecovery mod-
ulesexists for eachtypeof redundancy schemesupportedby the
system.We currentlysupportsimpledatastripingwithout redun-
dancy andareplication-basedredundancy schemecalledchained-
declustering[13]. The desiredredundancy schemefor a virtual
disk is specifiedwhenthe virtual disk is created. Subsequently,
theredundancy scheme,andotherattributes,canbetransparently
changedvia a processcalled virtual disk reconfiguration. The
virtual-to-physicaladdresstranslationmodulecontainscommon
routinesusedby the variousdataaccessand recovery modules.
Theseroutinestranslatethe virtual disk offsetsto physicaldisk
addresses.Therestof thissectionwill examinespecificaspectsof
thesystemin greaterdetail.

2.1 Virtual to Physical Translation

This sectiondescribeshow Petal translatesthe virtual disk ad-
dressesusedby clients into physicaldisk addresses.The basic
problem is to translatevirtual addressesof the form 
 virtual-
disk-identifier, offset� to physicaladdressesof theform 
 server-
identifier, disk-identifier, disk-offset� . This translationmust be
done consistentlyand efficiently in a distributed systemwhere
eventsthat alter virtual disk addresstranslation,suchas server
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failureor recovery, canoccurunexpectedly.
Figure4 illustratesthebasicdatastructuresandthestepsin the

translationprocedure.Therearethreeimportantdatastructures:a
virtual diskdirectory(VDir), aglobalmap(GMap),andaphysical
map(PMap).Thedottedlinesaroundthevirtualdiskdirectoryand
theglobalmapindicatethattheseareglobaldatastructuresthatare
replicatedandconsistentlyupdatedonall theserversby theglobal
statemanager. Eachserveralsohasaphysicalmapthatis local to
thatserver. Translatingaclient-suppliedvirtual disk identifierand
offsetinto aparticulardiskoffsetoccursin threestepsasshown in
Figure4.

1. Thevirtualdiskdirectorytranslatestheclient-suppliedvirtual
disk identifierinto aglobalmapidentifier.

2. The specifiedglobalmapdeterminestheserver responsible
for translatingthegivenoffset.

3. Thephysicalmapat thespecifiedservertranslatestheglobal
mapidentifierandtheoffset to a physicaldisk andanoffset
within thatdisk.

Tominimizecommunication,in almostall cases,theserverthat
performsthe translationin Step2 will be the sameserver that
performsthe translationin Step3. Thus, if a client hasinitially
sentthe requestto theappropriateserver, thatserver canperform
all threestepsin the translationlocally without communicating
with any otherserver.

Thereis oneglobalmappervirtual disk thatspecifiesthetuple
of serversspannedby thevirtual disk andtheredundancy scheme
usedto protectclient datastoredon the virtual disk. To tolerate
server failures,a secondaryserver canbe assignedresponsibility
for mappingthe sameoffset when the primary is not available.
Global mapsare immutable; to changea virtual disk’s tuple of
serversor redundancy scheme,thevirtual diskmustbeassigneda
new globalmap. Section2.3 describingreconfigurationprovides
moredetailsaboutthis process.

The physicalmapis the actualdatastructureusedto translate
an offset within a virtual disk to a physicaldisk and an offset
within thatdisk. It is similar to a pagetablein a virtual memory
systemandeachphysicalmapentrytranslatesa64Kbyteregionof
physicaldisk. Theserverthatperformsthetranslationwill usually
also perform the disk operationsneededto servicethe original
client request. The separationof the translationdatastructures
into globalandlocal physicalmapsallows usto keepthebulk of

the mappinginformationlocal. Doing so minimizesthe amount
of informationthatmustbekept in globaldatastructuresthatare
replicatedand,therefore,expensiveto update.

2.2 Support for Backup

Petalattemptstosimplify aclient’sbackupprocedurebyproviding
a commonmechanismthatcanbe appliedby clientsto automate
the backupand recovery of all datastoredon the system. The
mechanismPetalprovidesisfast efficient snapshotsof virtualdisks.
By using copy-on-writetechniques,Petalcan quickly createan
exact copyof a virtual disk at a specifiedpoint in time. A client
treatsthesnapshotlike any othervirtual disk,exceptthatit cannot
bemodified.

Supportingsnapshotsrequires a slightly more complicated
virtual-to-physicaltranslationprocedurethandescribedin thepre-
vious section. In particular, the virtual disk directory doesnot
translatea virtual disk identifier to a global map identifier, but
ratherto the tuple 
 global-map-identifier, epoch-number� . The
epoch-numberis a monotonicallyincreasingversionnumberthat
distinguishesdatastoredat thesamevirtual disk offsetatdifferent
pointsin time. Thetuple 
 global-map-identifier, epoch-number�
is thenusedby thephysicalmapin thelaststepof thetranslation.

Whenthesystemcreatesasnapshotof avirtualdisk,anew tuple
with a laterepochnumberis createdin thevirtual disk directory.
All accessesto the original virtual disk arethenmadeusingthe
new epochnumber. Theolderepochnumberis usedby thenewly
createdsnapshot.This ensuresthat any new datawritten to the
originalvirtual diskwill createnew entriesin thenew epochrather
thanoverwritingthedatain thepreviousepoch.Also,readrequests
can find the datamost recentlywritten to a particularoffset by
looking for themostrecentepoch.

Creatinga snapshotthat is consistentat the client application
level requirespausingtheapplicationfor thebrief time, lessthan
one second,it takesto createa Petalsnapshot. An alternative
approachwould not require pausingthe applicationand would
createa “crash-consistent”snapshot,that is, the snapshotwould
besimilar to thedisk imagethatwouldbeleft afteranapplication
crashed. Suchsnapshotscould later be madeconsistentat the
applicationlevel by running an application-dependentrecovery
programsuchasfsck in the caseof Unix file systems.We are
consideringimplementingcrash-consistentsnapshots,but they are
currentlynotsupported.

Snapshotscanbekepton-lineandfacilitatetherecoveryof ac-
cidentallydeletedfiles. Also,sinceasnapshotbehavesexactlylike
a read-onlylocaldisk,aPetalclientcanuseit to createconsistent
archivesof datausingutilities suchastar.

2.3 IncrementalReconfiguration

Occasionally, it is desirableto changea virtual disk’s redundancy
schemeor the set of servers over which it is mapped. Sucha
changeis oftenprecipitatedbytheadditionor removalof disksand
servers. This sectiondescribeshow Petalincorporatesnew disks
andservers,andhow existing virtual diskscanbereconfiguredto
takeadvantageof thesenew resources.Theformerprocessesare
describedonly from the point of view of addingnew resources
but areeasilygeneralizedto the removal of resources.The latter
processis referredto as virtual disk reconfiguration and is the
primaryfocusof this section.

Theadditionof adiskto aserver is handledlocally by thegiven
server. Subsequentstorageallocationrequestsautomaticallytake
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the new disk into consideration. However, for load balance,it
is desirable� to redistributepreviously allocatedstorageto thenew
diskaswell. Thisredistributionismosteasilyaccomplishedaspart
of a localbackgroundprocessthatperiodicallymovesdataamong
disks.Wehavenotyet implementedsuchabackgroundprocessin
Petal. Nonetheless,existing datais redistributedto newly added
disksasaside-effectof thevirtual disk reconfiguration.

The additionof a Petalserver is a globaloperationcomposed
of several stepsinvolving the global statemanagementmodule
and the livenessmodule. First, the new server is addedto the
membershipof thePetalstoragesystem.Thereafter, thenew server
will participatein any future global operations. Next, the sets
of serversusedby the livenessmodulefor determiningwhether
a particularserver is up or down is adjustedto incorporatethe
new server. Finally, existingvirtual disksarereconfiguredto take
advantageof thenew server, usingtheprocessdescribedbelow.

Given thevirtual-to-physicaltranslationprocedurealreadyde-
scribedin Section2.1,andin theabsenceof any otheractivity in the
system,virtual disk reconfigurationcanbe trivially implemented
asfollows:

1. Createanew globalmapwith thedesiredredundancy scheme
andservermapping.

2. Changeall virtual disk directoryentriesthat refer to theold
globalmapto referto thenew one.

3. Redistribute thedatato theserversaccordingto the transla-
tionsspecifiedin thenew globalmap.Thisdatadistribution
couldpotentiallyrequiresubstantialamountsof networkand
disk traffic.

Thechallengeis toperformreconfigurationincrementallyandcon-
currentlywith theprocessingof normalclient requests.We find it
acceptableif the proceduretakesa few hoursbut it mustnot de-
gradetheperformanceof thesystemsignificantly. For example,if
avirtualdisk is reconfiguredbecauseanew serverhasbeenadded,
theperformanceof thevirtual disk shouldgraduallyincreasedur-
ing reconfigurationfrom its level beforereconfigurationto its level
after reconfiguration.We will describeour reconfigurationalgo-
rithm in two steps.First,wedescribethebasicalgorithmandthen
a refinementto that algorithm. The refinedalgorithmis what is
actuallyimplementedin our system.

In thebasicalgorithm,stepsoneandtwo, describedabove,are
firstexecuted.Next, startingwith thetranslationsin themostrecent
epochthathavenotyetbeenmoved,datais transferredto thenew
collectionof serversasspecifiedby thenew globalmap. Because
of theamountof datathatmayneedto bemoved,reconfiguration
cantakealongtimetocomplete.In themeantime,clientswill wish
to readandwrite datato a virtual disk that is beingreconfigured.
To accommodatesuchrequests,our readandwrite proceduresare
designedto function as follows. When a client readrequestis
serviced,the old globalmapis tried if an appropriatetranslation
is not foundin thenew globalmap. This ensuresthattranslations
thathave not yet beenmoved will still be foundin theold global
map. Any client write requestswill alwaysaccessonly the new
globalmap.Also,sincewemovedatastartingwith themostrecent
epoch,we ensurethat readrequestswill not returndatafrom an
olderepochthanthatrequestedby theclient.

Themain limitation of thebasicalgorithmis that server map-
pings for an entire virtual disk are changedbeforeany data is
moved. Thismeansthatalmosteveryclientreadrequestsubmitted
that is basedon the new globalmapwill missin the new global
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mapandwill have to beforwardedto theold one. This will usu-
ally requireadditionalcommunicationbetweenserversandhasthe
potentialto seriouslydegradetheperformanceof thesystem.

Therefinedalgorithmsolvesthelimitationof thebasicalgorithm
by relocatingonly smallportionsof a virtual disk at a time. The
basicideais to breakup a virtual disk’s addressrangeinto three
regions:old, new, andfenced. Requeststo theold andnew regions
simply usethe old andnew global maps,respectively. Requests
to the fencedregion, however, usethe basicalgorithmwe have
describedabove. Oncewehaverelocatedeverythingin thefenced
region, it becomesa new region andwe fenceanotherpartof the
old region. We repeatuntil we have movedall thedatain theold
region into thenew region.

By keepingtherelativesizeof thefencedregionsmall,roughly
oneto tenpercentof the entirerange,we minimize the forward-
ing overhead. To help guardagainstfencingoff a heavily used
subrangeof the virtual disk, we constructthe fencedregion by
collectingsmallnon-contiguousrangesdistributedthroughoutthe
virtual disk, insteadof asinglecontiguousregion.

2.4 Data Accessand Recovery

ThissectiondescribesPetal’schained-declustered[13] dataaccess
andrecoverymodules.Thesemodulesgiveclientshighlyavailable
accessto databy automaticallybypassingfailedcomponents.Dy-
namic load balancingeliminatessystembottlenecksby ensuring
uniform loaddistribution even in the faceof componentfailures.
We startby describingthebasicideabehindchained-declustering
andthenmove into detaileddescriptionsof exactlywhathappens
on eachreadandwrite operation.

Figure 5 illustrates the chained-declustereddata placement
scheme. The dotted rectangleemphasizesthat the dataon the
storageservers appearas a single virtual disk to clients. Each
sequenceof lettersrepresentsa block of datastoredin the stor-
agesystem. Note that the two copiesof eachblock of dataare
alwaysstoredon neighboringservers.Furthermore,every pair of
neighboringservershasdatablocksin common. Becauseof this
arrangement,if Server 1 fails, servers0 and2 will automatically
shareServer 1’s readload;however, Server 3 will not experience
any loadincrease.By performingdynamicloadbalancing,wecan
do better. For example,sinceServer 3 hascopiesof somedata
from servers0 and2, servers0 and2 can offload someof their
normalreadloadon Server3 andachieveuniform loadbalancing.

Chainingthedataplacementallowseachserverto offloadsome
of its readloadto theserver eitherimmediatelyfollowing or pre-
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cedingthegivenserver. By cascadingtheoffloadingacrossmulti-
ple serv� ers,a uniform loadcanbemaintainedacrossall surviving
servers. In contrast,with a simplemirroredredundancy scheme
that replicatesall the datastoredon two servers, the failure of
eitherwould result in a 100%load increaseat the otherwith no
opportunitiesfor dynamicloadbalancing.In asystemthatstripes
over many mirroredservers,the100%loadincreaseat this single
serverwouldreducetheoverall systemthroughputby 50%.

Our currentprototypeimplementsa simpledynamicloadbal-
ancingscheme.Eachclient keepstrackof thenumberof requests
it haspendingateachserverandalwayssendsreadrequeststo the
server with theshorterqueuelength. This workswell if mostof
the requestsaregeneratedby a few clientsbut, obviously, would
not work well if mostrequestsaregeneratedby many clientsthat
only occasionallyissueI/O requests.Thechoiceof loadbalancing
algorithmis currentlyan active areaof researchwithin the Petal
project.

An additionaladvantagewith chained-declusteringis that by
placingall theeven-numberedserversat onesiteandall theodd-
numberedserversat anothersite,we cantoleratesite failures. A
disadvantageof chained-declusteringrelative to simplemirroring
is that it is lessreliable. With simplemirroring, if a server failed,
only thefailureof its mirror server would resultin databecoming
unavailable.With chained-declustering,if aserverfails, thefailure
of either one of its two neighboringservers will result in data
becomeunavailable.

In our implementationof chained-declustering,oneof thetwo
copiesof eachdatablock is denotedtheprimary andtheotheris
denotedthesecondary. Readrequestscanbeservicedfrom either
the primary or the secondarycopy but the servicingof write re-
questsmustalwaysstartattheprimary, unlesstheservercontaining
the primary is down in which caseit maystartat the secondary.
Becausewelockcopiesof thedatablocksbeforereadingorwriting
themto guaranteeconsistency, thisorderingguaranteeis necessary
to avoid deadlocks.

On a readrequest,theserver thatreceivestherequestattempts
to readthe requesteddata. If successful,the server returnsthe
requesteddata,otherwiseit returnsanerrorcodeandtheclienttries
anotherserver. If a requesttimesout dueto networkcongestion
or becausea server is down, the client will alternatelyretry the
primary and secondaryservers until either the requestsucceeds
or bothserversreturnerrorcodesindicatingthatit is not possible
to satisfythe request.Currently, this happensonly if both disks
containingcopiesof therequesteddatahavebeendestroyed.

On a write request,the server that receives the requestfirst
checksto seeif it is theprimaryfor thespecifieddataelement.If
it is theprimary, it first marksthis dataelementasbusyon stable
storage. It thensimultaneouslysendswrite requeststo its local
copyandthesecondarycopy. Whenboth requestscomplete,the
busy bit is clearedandtheclient that issuedthe requestis senta
statuscodeindicatingthesuccessor failureof theoperation.If the
primarycrasheswhileperformingtheupdate,thebusybitsareused
during crashrecovery to ensurethat the primary and secondary
copiesareconsistent.Write-ahead-loggingwith groupcommits
makesupdatingthebusybits efficient. As a furtheroptimization,
the clearingof busy bits is donelazily andwe maintaina cache
of themostrecentlysetbusybits. Thus,if write requestsdisplay
locality, a given busy bit will alreadybe seton disk andwill not
requireadditionalI/O.

If theserver thatreceivedthewrite requestis thesecondaryfor
the specifieddataelement,then it will servicethe requestonly
if it candeterminethat the server containingtheprimarycopy is
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down. In this case,thesecondarymarksthedataelementasstale
on stablestoragebeforewriting it to its local disk. The server
containingtheprimarycopywill eventuallyhave to bring all data
elementsmarkedstaleup-to-dateduring its recovery process.A
similarprocedureis usedby theprimaryif thesecondarydies.

3 Implementation and Performance

OurPetalprototypeis illustratedin Figure6. Four225MHz DEC
3000/700srunningDigital Unix actasservermachines.Eachruns
asinglePetalserver, whichis auser-level processthataccessesthe
physicaldisksusingtheUnix raw disk interface,andthenetwork
usingUDP/IP Unix sockets. Eachserver machineis configured
with 14Digital RZ29disks,eachof whichisa3.5inchSCSIdevice
with a4.3Gbytecapacity. Eachmachineusesoneof thedisksfor
write-aheadlogging andthe remainingto storeclient data. The
disksareconnectedto theservermachinevia two 10Mbyte/sfast
SCSIstringsusingtheDigital PMZAA-C hostbusadapter.

Four additionalmachinesrunningDigital Unix areconfigured
asPetalclientsto generateloadontheservers.Eachclient’skernel
is loadedwith the Petaldevice driver for accessingPetalvirtual
disks.ThisallowsclientstoaccessPetalvirtualdisksjustlike local
disks.Both theserversandclientsareconnectedto eachothervia
155Mbit/s ATM links over aDigital ATM network.

TheentirePetalRPCinterfacehas24 callsandmany of these
calls aredevotedto managementfunctions,suchascreatingand
deletingvirtual disks,makingsnapshots,reconfiguringa virtual
disk, and addinganddeletingservers. Thesecalls are typically
usedby user-level utilities to performtaskssuchas virtual disk
creationandmonitoringthephysicalresourcepoolsin thesystem
to determinewhenadditionalserversor disk shouldbeadded.

PetalRPCcallsthatimplementmanagementfunctionsareinfre-
quentlyexecutedandgenerallytakelessthanasecondtocomplete.
In particular, createandsnapshotoperationstakeabout650 mil-
liseconds.Deleteandreconfigurationtakeabout650milliseconds
to initiate,but their totalexecutiontimeis dependentontheactual
amountof physicalstorageassociatedwith the specifiedvirtual
disk.

In the remainderof the section,we will reporton the perfor-
manceof accessingaPetalvirtualdiskandthebehavior of file sys-
temsbuilt onPetal.Ourprimaryperformancegoalsareto provide
latency roughly comparableto a locally attacheddisk, through-
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Client RequestLatency (ms)
Request Local Disk Petal

RZ29 Log NVRAM Log

512byteRead 9 10 10
8 Kbyte Read 11 12 12
64 KbyteRead 21 28 28
512byteWrite 10 19 12
8 Kbyte Write 12 22 16
64 KbyteWrite 20 40 33

Table1: Latency of aChained-DeclusteredVirtual Disk

put that scaleswith thenumberof servers,andperformancethat
gracefullydegradesasserversfail.

3.1 Petal Performance

This sectionexaminesthe readandwrite performanceof a Petal
chain-declusteredvirtualdisk. For areadrequest,theclientmakes
anRPCto aPetalserverthatsimplyreturnsthedatafrom its local
disk. Whenaserver receivesawrite request,it first writesasmall
log entrythatis usedto recover to a consistentstateafteraserver
crash.Next, theserver simultaneouslywrites thedatato its local
disk anda seconddisk on a mirror server. Whenbothdisk writes
complete,thefirst, orprimary, serverrepliesto theclient. Theread
andwrite proceduresusedby Petalaredescribedin greaterdetail
in Section2.4.

Table 1 comparesthe read and write latency of a chained-
declusteredPetalvirtual disk with a local RZ29 disk. For this
experiment,asingleclient generatesrequestsof thespecifiedsize
to randomdiskoffsets.Weshow Petalperformancewith twokinds
of write-ahead-loggingdevices,anRZ29diskandanNVRAM de-
vice simulatedusingRAM. Thelog device is usedonly to service
write requestsanddoesnot affect readperformance.Logging to
NVRAM improveswrite latency by approximately7ms.

For readrequestsof 512bytesand8 Kbytes,thePetallatency
is only slightly worsethan an RZ29. For 64 Kbyte reads,the
latency gapwidensto 7ms. Mostof theincreasedlatency is dueto
theadditionaldelayin transmittingthedataover thenetworkand
includestheUnix socket,UDP/IP, andATM hardwareoverheads,
which accountsfor over 6ms. ThePetalserver softwareandthe
client interfaceoverheadsare negligible. If we overlappedthe
readingof datafromdiskswith thetransferof dataoverthenetwork,
wecouldeliminatemuchof this 7msoverhead.

Even with an NVRAM log device, Petalwrite performanceis
worsethana localRZ29disk. In additionto thenetworkdelayin
sendingthedatato theprimaryserver, thereis anadditionaldelay
becausetheprimaryhasto sendthedatato themirror server and
wait for an acknowledgmentbeforereturningto the client. The
latenciesdueto thenetworktransmissionsareapproximately1ms,
3ms,and12msfor 512byte,8Kbyte,and64Kbytewrite requests
respectively. Also, thearmsandthe spindlesof the primaryand
secondarydisksareunsynchronized. This lackof synchronization
causeswrite requeststo wait for the slower of the primary and
secondarydiskwrites.

The secondcolumnof Table2 shows the peakthroughputof
a chained-declusteredPetalvirtual disk using an RZ29 as a log
device. (The peakwrite throughputis about10% higher if we
useanNVRAM log device.) For small requestsizes,we express
throughputasthenumberof requestspersecond,while for larger
requestsizes,it is shown in megabytesper second. To measure

AggregateThroughput (RZ29 Log)
Request Normal Failed % of Normal

512byteRead 3150req/s 2310req/s 73%
8 Kbyte Read 20 Mbytes/s 14.6Mbytes/s 73%
64 KbyteRead 43.1Mbytes/s 33.7Mbytes/s 78%
512byteWrite 1030req/s 1055req/s 102%
8 Kbyte Write 6.6Mbytes/s 6.6Mbytes/s 100%
64 KbyteWrite 12.3Mbytes/s 12.5Mbytes/s 101%

Table2: NormalandFailedThroughputof aChained-Declustered
Virtual Disk
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Figure7: Scalingwith IncreasedServers

peakthroughput,eachof the four Petalclientsshown in Figure6
makerandomrequeststo asinglePetalvirtual disk.

Throughputis mostly limited by CPUoverheads.In all cases,
eachserver’s CPUis approximately90-100%utilized with a sig-
nificant fractionof the time spentin copyingandchecksumming
datafor networkaccess.Our Petalserversrun at user-level and
we usethe standardUNIX socketinterfaceandUDP/IPprotocol
stacks. Techniquesfor streamliningthesenetwork accessesare
well understood[9, 18]. As an experiment,we eliminatedcopy-
ing and checksumsat the network layer for large readrequests.
For 64 Kbyte readrequests,this optimizationreducedCPU uti-
lization to 48% andincreasedthroughputfrom 43.1Mbytes/sto
48.5Mbytes/s.In thiscase,thethroughputwaslimited by thedisk
controller.

Thethird columnof Table2 showstheperformanceof achain-
declusteredPetaldisk whenoneof the four servershascrashed.
For readrequests,theperformanceis 73–78%of normal,that is,
with three-quartersof the servers,we getaboutthree-quartersof
the normalperformance.This indicatesthat the dataplacement
and dynamicload balancingschemesareworking effectively to
redistribute load. The write performanceunderfailure is about
the sameasthenormalcase. This is because,whenserversfail,
thevirtual disk addressesmanagedby thoseserversareno longer
mirrored. This reducesthe numberof disk writes in the system
by thefractionof failedservers. Therefore,theloadseenby each
survivingserverbeforeandafteraserverfailureisnearlythesame.

Figure 7 shows the effect of scalingPetal from two to four
servers. Thethroughputfor eachrequesttypeis normalizedwith
respectto the maximumthroughputfor that requesttype. The
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ElapsedTime (seconds)
UFS AdvFS

Phase RZ29 Petal RZ29 Petal

CreateDirectories 0.9 1.4 0.28 0.28
CopyFiles 4.1 4.4 3.6 3.7
DirectoryStatus 4.3 4.1 4.2 4.6
ScanFiles 5.1 5.2 5.2 5.3
Compile 41.1 41.8 40.0 40.6

Table3: ModifiedAndrew Benchmark

systemconfigurationsmeasuredarenot largeenoughto determine
if thescalingis likely to remainlinear, but theobservedscalingis
promising.

3.2 File SystemPerformance

Petalprovides clients with a large virtual disk that is available
to all clientson the network. “Cluster file systems”suchasthe
xFS [1] andparalleldatabasessuchasthe OracleParallelServer
maybeableto takeadvantageof thisfactbyconcurrentlyaccessing
a singlevirtual disk from multiple machines.However, because
suchsystemsarenotwidelyavailable,wewill restrictourattention
to Digital’s UNIX File System(UFS)andAdvancedFile System
(AdvFS).

Table 3 comparesthe performanceof the Modified Andrew
Benchmarkon four configurations:theUFSon a locally attached
disk, theUFSonaPetalvirtual disk, theAdvFSonacollectionof
14 locally attacheddisks,andthe AdvFSon a Petalvirtual disk.
The Petalvirtual disk is configuredto usethe chain-declustered
dataplacementandanRZ29disk for logging.

The Modified Andrew Benchmarkhasfive phases. The first
phaserecursively createssubdirectories.The secondphasemea-
suresthefile system’s datatransfercapabilities.The third phase
recursivelyexaminesthestatusof directoriesandthefilescontained
therein.Thefourthphasescansthecontentsof datastoredin each
file. The final phaseis indicative of the programdevelopment
phaseandis somewhatcomputationallyintensive.

In all casesbutone,thefile systemlevelperformanceof thePetal
virtual disk is comparableto locally attacheddisks. Theonly ex-
ceptionis in thefirst phaseof thebenchmarkusingtheUFS,which
generatesmany synchronouswrites. As we mentionedearlier,
writesto achained-declusteredPetalvirtual diskcanincur logging
andotheroverheadsthat increasethe synchronouswrite latency.
TheAdvFS,which journalsmeta-dataupdatesto reducethenum-
ber of synchronouswrites, doesnot suffer from theseoverheads
when runningon Petal,and achieves much higher performance
thantheUFSin thefirst phaseof thebenchmark.

In the local disk measurements,althoughtheUFSusesonly a
singlediskwhiletheAdvFSuses14disks,they achieveverysimilar
performance.This is becausethe Modified Andrew Benchmark
primarily stressesthe latency rather than the throughputof the
storagesystem.In thecaseof thecompilationphase,performance
is primarily limited by thespeedof theCPU.

4 Discussion

The availability of cost-effective scalablenetworksis thedriving
forcebehindour work. By thinkingof thenetworkastheprimary
system-level interconnect,we canbuild incrementallyexpandable
distributedstoragesystemswith availability, capacity, andperfor-
mancefar beyond thoseof currentcentralizedstoragesystems.

Unfortunately, suchdistributedstoragesystems,poseseveraldiffi-
cultmanagementandconsistencyproblems.Petalisanexperiment
in trying to addresstheseproblems.

Petalusesvirtual disksto hidethedistributednatureof thesys-
temfrom its clients.It allowsindependentapplicationstosharethe
performanceandcapacityof thephysicalstorageresourcesin the
system.It cantransparentlyincorporatenew storagecomponents
andprovide convenientmanagementfeaturessuchassnapshots.
We currentlydo not provide any specialsupportfor protectinga
client’s datafrom otherclients;however, it would not bedifficult
to providesecurityon apervirtual disk basis.

Petal’s useof the virtual disk abstractionaddsan additional
level of overhead,and can prevent application-specificdisk op-
timizationsthat rely on careful placementof data. We believe
that this is not a seriousproblemandis a reasonabletradeoff for
thebenefitsthat Petalcanprovide. We view thevirtualizationas
anotherexampleof the currenttrend towardssophisticateddisk
arraycontrollers,and SCSI disks that obscurethe physicaldisk
geometry. In fact, eachPetalserver is of approximatelythesame
complexity as a RAID controllerand hasvery similar hardware
resourcerequirements.

Petalprovidesadisk-likeinterfacethatallowsclientstoreadand
writeblocksof data.Wechosethisinterfacebecauseit canbeeasily
integratedinto any existingcomputersystemandcantransparently
supportmostexisting file systemsanddatabases.Onealternative
to Petalis to designdistributedstoragewith a richerinterfacethat
is more like a file systemas is being donein the CMU NASD
project[11]. Thiscouldpotentiallyresultin asystemthatis more
efficient overall; however, we currentlybelieve that the simpler
Petal interfaceis adequateand that higher level servicescan be
efficiently built on topof it.

Petal’s framework is sufficiently generalto incorporateother
classesof redundancy schemessuchasthosebasedonparity [5,17].
However, we have chosento concentrateon replication-basedre-
dundancy schemeslike chained-declustering,even though they
imposea highercapacityoverhead,becausethey aremoreread-
ily applicablefor toleratingsite failures,presentopportunitiesfor
dynamicloadbalancing,andareeasierto implementefficiently in
distributedsystems.

5 RelatedWork

ThissectiondescribesworkrelatedtoPetalin termsof fourprimary
characteristics:type of abstraction(block-level or file-system-
level), degreeof distribution, level of fault tolerance,andsupport
for incrementalexpandability.

Related block-level storage systemsinclude RAID-II [7],
TickerTAIP [5], Logical Disk [8], Loge [10], Mime [6], Au-
toRAID [19], andSwift [4]. Someof thesesystemssupportonly
simplealgorithmicmappingsbetweentheaddressspaceseenby a
client andtheunderlyingphysicaldisks. This mappingis usually
completelyspecifiedwhenthesystemis configured. In contrast,
AutoRAID, Logical Disk, Loge, and Mime, like Petal,support
moreflexible mappingsby usingindex datastructures.Exceptfor
AutoRAID andPetal,noneof thesesystemssupportthecreation
of multiplevirtual disks.

Most of theblock-level systems,includingAutoRAID, do not
supportdistribution acrossmultiple nodesor over geographically
distributedsites. Two exceptionsareTickerTAIP andSwift, both
of whichprovidesupportfor distributingdataovermultiplenodes.
However, bothassumethatthecommunicationinterconnectis re-
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liable andthereforedo not dealwith the full rangeof distributed
systems� issuesaddressedby Petal.Althoughmany of thesystems
abovecantoleratediskfailures,TickerTAIP is theonlyonethatcan
toleratenodefailures.In contrast,Petalsupportswiderdistribution
andcantoleratebothnodeandnetworkfailures.

Themostclosely relatedfile systemsincludexFS[1], Zebra[12],
Echo [15], and AFS [16]. All thesesystemsexcept xFS usea
singlemeta-dataserverfor agivenpartialsubtreeof thefile system
namespace;ultimatelylimiting theirscalability. BecausexFScan
distribute themanagementof meta-dataacrossmultiple nodeson
anobject-by-objectbasis,it is oneof thefew file systemsthatwe
know of thatdoesnotsuffer from thisproblem.

All the file and disk systemsabove can be consideredincre-
mentally expandablein the sensethat datacan be first dumped
to tapeandthenlaterrestoredafteraddingextra componentsand
reconfiguringthesystem.Someof thesesystemsgoastepfurther.
Both Zebraand AutoRAID allow new disks to be incorporated
into the systemdynamicallyandtransparentlywith respectto its
clients. AFS allows new nodesto be addedandvolumes, corre-
spondingto partial subtreesof the file systemnamespace,to be
movedbetweennodestransparently;however, AFSdoesnotallow
a volume to spanmore than a single node. This is in contrast
with Petalwherea virtual disk canspanmultiple nodes. A goal
of the xFS designis to be ableto changethe managementnode
for a particularfile dynamicallyfor loadbalancingor in response
to nodeadditionsor deletions.However, this functionalityhasnot
yetbeenimplemented.

Petalsupportstheadditionanddeletionof nodesfromthesystem
in thefaceof arbitrarynodeandnetworkfailures,andaPetalvirtual
disk,whichcanspanmultiplenodes,canbetransparentlyreconfig-
uredtotakeadvantageof theadditionalnodes.Thisreconfiguration
is transparentto Petalclients. To thebestof ourknowledge,Petal
is thefirst distributedblock-level storagesystemthatsupportsvir-
tual “containers.” Becausemanagingphysicalresourcesbecomes
moredifficult asthestoragesystembecomeslargerandmoredis-
tributed,wehavefoundthatdistribution andvirtual containersare
particularlypowerfulwhencombined.Distributionallowsthesys-
tem to scaleto large sizesand virtual containersmakeit easier
to allocatephysicalresourcesefficiently in large-scalesystems.
Petalis alsothefirst storagesystemthatsupportstransparentad-
dition anddeletionof nodesto existing “storagecontainers”in the
faceof arbitrarycomponentandnetworkfailures.Thisallows the
system-level performanceof a singlecontainerto scalegracefully
asadditionalnodesareadded.

6 Summary and Conclusions

Petalis a distributedblock-level storagesystemthat toleratesand
recoversfrom any singlecomponentfailure,dynamicallybalances
load betweenservers,andtransparentlyexpandsin performance
andcapacity. Our principalgoalhasbeento designastoragesys-
tem for heterogeneousenvironmentsthat is easyto manageand
thatcanscalegracefullyin capacityandperformancewithout sig-
nificantly increasingthecostof managingthesystem.We believe
thatwehavefoundanovelcombinationof featuresthatallow usto
achieve this goal;however, only theactualuseof thesystemover
asignificantperiodof timecanconclusively prove thisassertion.

In designingPetal,we decidedto usedistributedsoftwareso-
lutionsratherthanhardwaresolutionswhenever applicable.One
exampleof this software/hardwaretradeoff is Petal’s strategy for
fault tolerance,whichusesdistributedmirroringratherthanprovid-

ing redundanthardwarepathsto eachdisk. Thisapproachmakesit
easierto geographicallydistributethesystemandto scaleto larger
systemsizes.Anothertradeoff is theuseof distributedalgorithms
todeterminewhenservershavefailed,ormoregenerallytoachieve
consensus, ratherthanusingreliablecommunicationhardwareor
specializedhardwarefor synchronization.

Petalprovides a block-level rather than a file-level interface.
ThisallowsPetaltohandleheterogeneousclientfile systemsgrace-
fully. Thechoiceof a block-level interfacehasgreatlysimplified
our work without adverselylimiting the functionalitythatwe can
provide. It alsoopensthe possibility of encapsulatingthe Petal
server softwareinto a disk arraycontrollerin muchthesameway
RAID softwareis encapsulatedinto disk arraycontrollerstoday.

Petal’s virtual disks have proved invaluable in separatinga
client’s view of storagefrom the physicalresourcesin the sys-
tem. Virtualizationmakesit easierto allocatephysicalresources
amongmany heterogeneousclientsandhasenabledusefulfeatures
suchassnapshotsandtransparentincrementalexpandability.

We aregenerallysatisfiedwith the performanceof our proto-
type. The readandwrite latenciesfor a chain-declusteredPetal
virtual disk aresomewhat larger than that for a locally attached
disk. We canachieve I/O ratesup to 3150requests/secfor small
readrequestsandbandwidthup to 43.1Mbytes/secfor large read
requests.The throughputfor write requestis lessbut we believe
thatweunderstandhow to improvetheirsignificantlyperformance.
Theperformanceof Petaldegradesgracefullyasa fractionof the
numberof failed serversandthe throughputof thesystemscales
well with the numberof servers. We have not measureda suffi-
ciently largesystemto determinewhethertheperformancescaling
is linear, but we feel confidentthat it will be. The prototypehas
beenrunning for the pastseveral monthsand we are currently
working on building a larger productionsystemfor deployment
andday-to-dayuseatour laboratory.
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